Device
Provides the Device class for representing photonic devices.
BufferSpec
Bases: BaseModel
Defines the specifications for a buffer zone around a device.
This class is used to specify the mode and thickness of a buffer zone that is added around the device geometry. The buffer zone can be used for various purposes such as providing extra space for device fabrication processes or for ensuring that the device is isolated from surrounding structures.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mode
|
dict[str, str]
|
A dictionary that defines the buffer mode for each side of the device ('top', 'bottom', 'left', 'right'), where 'constant' is used for isolated structures and 'edge' is utilized for preserving the edge, such as for waveguide connections. |
required |
thickness
|
dict[str, int]
|
A dictionary that defines the thickness of the buffer zone for each side of the device ('top', 'bottom', 'left', 'right'). Each value must be greater than 0. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If any of the modes specified in the 'mode' dictionary are not one of the allowed values ('constant', 'edge'). Or if any of the thickness values are not greater than 0. |
Example
import prefab as pf
buffer_spec = pf.BufferSpec(
mode={
"top": "constant",
"bottom": "edge",
"left": "constant",
"right": "edge",
},
thickness={
"top": 150,
"bottom": 100,
"left": 200,
"right": 250,
},
)
Source code in prefab/device.py
Device
Bases: BaseModel
Source code in prefab/device.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 |
|
is_binary: bool
property
Check if the device geometry is binary.
Returns:
Type | Description |
---|---|
bool
|
True if the device geometry is binary, False otherwise. |
__init__(device_array, buffer_spec=None)
Represents the planar geometry of a photonic device design that will have its nanofabrication outcome predicted and/or corrected.
This class is designed to encapsulate the geometric representation of a photonic device, facilitating operations such as padding, normalization, binarization, ternarization, trimming, and blurring. These operations are useful for preparing the device design for prediction or correction. Additionally, the class provides methods for exporting the device representation to various formats, including ndarray, image files, and GDSII files, supporting a range of analysis and fabrication workflows.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device_array
|
ndarray
|
A 2D array representing the planar geometry of the device. This array undergoes various transformations to predict or correct the nanofabrication process. |
required |
buffer_spec
|
BufferSpec
|
Defines the parameters for adding a buffer zone around the device geometry. This buffer zone is needed for providing surrounding context for prediction or correction and for ensuring seamless integration with the surrounding circuitry. By default, a generous padding is applied to accommodate isolated structures. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
shape |
tuple[int, int]
|
The shape of the device array. |
Raises:
Type | Description |
---|---|
ValueError
|
If the provided |
Source code in prefab/device.py
binarize(eta=0.5, beta=np.inf)
Binarize the device geometry based on a threshold and a scaling factor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
eta
|
float
|
The threshold value for binarization. Defaults to 0.5. |
0.5
|
beta
|
float
|
The scaling factor for the binarization process. A higher value makes the transition sharper. Defaults to np.inf, which results in a hard threshold. |
inf
|
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device with the binarized geometry. |
Source code in prefab/device.py
binarize_hard(eta=0.5)
Apply a hard threshold to binarize the device geometry. The binarize
function
is generally preferred for most use cases, but it can create numerical artifacts
for large beta values.
Parameters
Parameters
eta : float, optional
The threshold value for binarization. Defaults to 0.5.
Returns
Returns
Device
A new instance of the Device with the threshold-binarized geometry.
Source code in prefab/device.py
binarize_monte_carlo(threshold_noise_std=2.0, threshold_blur_std=8.0)
Binarize the device geometry using a Monte Carlo approach with Gaussian blurring.
This method applies a dynamic thresholding technique where the threshold value is determined by a base value perturbed by Gaussian-distributed random noise. The threshold is then spatially varied across the device array using Gaussian blurring, simulating a more realistic scenario where the threshold is not uniform across the device.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
threshold_noise_std
|
float
|
The standard deviation of the Gaussian distribution used to generate noise for the threshold values. This controls the amount of randomness in the threshold. Defaults to 2.0. |
2.0
|
threshold_blur_std
|
float
|
The standard deviation for the Gaussian kernel used in blurring the threshold map. This controls the spatial variation of the threshold across the array. Defaults to 9.0. |
8.0
|
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device with the binarized geometry. |
Source code in prefab/device.py
blur(sigma=1.0)
Apply Gaussian blur to the device geometry and normalize the result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sigma
|
float
|
The standard deviation for the Gaussian kernel. This controls the amount of blurring. Defaults to 1.0. |
1.0
|
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device with the blurred and normalized geometry. |
Source code in prefab/device.py
check_feature_size(min_feature_size, strel='disk')
Check and visualize the effect of enforcing a minimum feature size on the device geometry.
This method enforces a minimum feature size on the device geometry using the specified structuring element, compares the modified geometry with the original, and plots the differences. It also calculates and prints the Hamming distance between the original and modified geometries, providing a measure of the changes introduced by the feature size enforcement.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
min_feature_size
|
int
|
The minimum feature size to enforce, in nanometers. |
required |
strel
|
str
|
The type of structuring element to use. Can be either "disk" or "square". Defaults to "disk". |
'disk'
|
Raises:
Type | Description |
---|---|
ValueError
|
If an invalid structuring element type is specified or if min_feature_size is not a positive integer. |
Source code in prefab/device.py
correct(model, binarize=True, gpu=False)
Correct the nanofabrication outcome of the device using a specified model.
This method sends the device geometry to a serverless correction service, which uses a specified machine learning model to correct the outcome of the nanofabrication process. The correction aims to adjust the device geometry to compensate for known fabrication errors and improve the accuracy of the final device structure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model to use for correction, representing a specific fabrication process
and dataset. This model encapsulates details about the fabrication foundry,
process, material, technology, thickness, and sidewall presence, as defined
in |
required |
binarize
|
bool
|
If True, the corrected device geometry will be binarized using a threshold method. This is useful for converting probabilistic corrections into binary geometries. Defaults to True. |
True
|
gpu
|
bool
|
If True, the prediction will be performed on a GPU. Defaults to False. Note: The GPU option has more overhead and will take longer for small devices, but will be faster for larger devices. |
False
|
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device class with the corrected geometry. |
Raises:
Type | Description |
---|---|
ValueError
|
If the correction service returns an error or if the response from the service cannot be processed correctly. |
Source code in prefab/device.py
dilate(kernel_size=3)
Dilate the device geometry by expanding areas of overlap.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kernel_size
|
int
|
The size of the kernel used for dilation. |
3
|
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device with the dilated geometry. |
Source code in prefab/device.py
enforce_feature_size(min_feature_size, strel='disk')
Enforce a minimum feature size on the device geometry.
This method applies morphological operations to ensure that all features in the device geometry are at least the specified minimum size. It uses either a disk or square structuring element for the operations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
min_feature_size
|
int
|
The minimum feature size to enforce, in nanometers. |
required |
strel
|
str
|
The type of structuring element to use. Can be either "disk" or "square". Defaults to "disk". |
'disk'
|
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device with the modified geometry. |
Raises:
Type | Description |
---|---|
ValueError
|
If an invalid structuring element type is specified. |
Source code in prefab/device.py
erode(kernel_size=3)
Erode the device geometry by removing small areas of overlap.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kernel_size
|
int
|
The size of the kernel used for erosion. |
3
|
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device with the eroded geometry. |
Source code in prefab/device.py
flatten()
Flatten the device geometry by summing the vertical layers and normalizing the result.
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device with the flattened geometry. |
Source code in prefab/device.py
get_uncertainty()
Calculate the uncertainty in the edge positions of the predicted device.
This method computes the uncertainty based on the deviation of the device's geometry values from the midpoint (0.5). The uncertainty is defined as the absolute difference from 0.5, scaled and inverted to provide a measure where higher values indicate greater uncertainty.
Returns:
Type | Description |
---|---|
ndarray
|
An array representing the uncertainty in the edge positions of the device, with higher values indicating greater uncertainty. |
Source code in prefab/device.py
normalize()
Normalize the device geometry.
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device with the normalized geometry. |
Source code in prefab/device.py
plot(show_buffer=True, bounds=None, level=None, ax=None, **kwargs)
Visualizes the device geometry.
This method allows for the visualization of the device geometry. The visualization can be customized with various matplotlib parameters and can be drawn on an existing matplotlib Axes object or create a new one if none is provided.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
show_buffer
|
bool
|
If True, visualizes the buffer zones around the device. Defaults to True. |
True
|
bounds
|
Optional[tuple[tuple[int, int], tuple[int, int]]]
|
Specifies the bounds for zooming into the device geometry, formatted as ((min_x, min_y), (max_x, max_y)). If 'max_x' or 'max_y' is set to "end", it will be replaced with the corresponding dimension size of the device array. If None, the entire device geometry is visualized. |
None
|
level
|
int
|
The vertical layer to plot. If None, the device geometry is flattened. Defaults to None. |
None
|
ax
|
Optional[Axes]
|
An existing matplotlib Axes object to draw the device geometry on. If None, a new figure and axes will be created. Defaults to None. |
None
|
**kwargs
|
Additional matplotlib parameters for plot customization. |
{}
|
Returns:
Type | Description |
---|---|
Axes
|
The matplotlib Axes object containing the plot. This object can be used for further plot customization or saving the plot after the method returns. |
Source code in prefab/device.py
plot_compare(ref_device, show_buffer=True, bounds=None, level=None, ax=None, **kwargs)
Visualizes the comparison between the current device geometry and a reference device geometry.
Positive values (dilation) and negative values (erosion) are visualized with a color map to indicate areas where the current device has expanded or contracted relative to the reference.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ref_device
|
Device
|
The reference device to compare against. |
required |
show_buffer
|
bool
|
If True, visualizes the buffer zones around the device. Defaults to True. |
True
|
bounds
|
Optional[tuple[tuple[int, int], tuple[int, int]]]
|
Specifies the bounds for zooming into the device geometry, formatted as ((min_x, min_y), (max_x, max_y)). If 'max_x' or 'max_y' is set to "end", it will be replaced with the corresponding dimension size of the device array. If None, the entire device geometry is visualized. |
None
|
level
|
int
|
The vertical layer to plot. If None, the device geometry is flattened. Defaults to None. |
None
|
ax
|
Optional[Axes]
|
An existing matplotlib Axes object to draw the comparison on. If None, a new figure and axes will be created. Defaults to None. |
None
|
**kwargs
|
Additional matplotlib parameters for plot customization. |
{}
|
Returns:
Type | Description |
---|---|
Axes
|
The matplotlib Axes object containing the comparison plot. This object can be used for further plot customization or saving the plot after the method returns. |
Source code in prefab/device.py
plot_contour(linewidth=None, show_buffer=True, bounds=None, level=None, ax=None, **kwargs)
Visualizes the contour of the device geometry.
This method plots the contour of the device geometry, emphasizing the edges and boundaries of the device. The contour plot can be customized with various matplotlib parameters, including line width and color. The plot can be drawn on an existing matplotlib Axes object or create a new one if none is provided.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linewidth
|
Optional[int]
|
The width of the contour lines. If None, the linewidth is automatically determined based on the size of the device array. Defaults to None. |
None
|
show_buffer
|
bool
|
If True, the buffer zones around the device will be visualized. By default, it is set to True. |
True
|
bounds
|
Optional[tuple[tuple[int, int], tuple[int, int]]]
|
Specifies the bounds for zooming into the device geometry, formatted as ((min_x, min_y), (max_x, max_y)). If 'max_x' or 'max_y' is set to "end", it will be replaced with the corresponding dimension size of the device array. If None, the entire device geometry is visualized. |
None
|
level
|
int
|
The vertical layer to plot. If None, the device geometry is flattened. Defaults to None. |
None
|
ax
|
Optional[Axes]
|
An existing matplotlib Axes object to draw the device contour on. If None, a new figure and axes will be created. Defaults to None. |
None
|
**kwargs
|
Additional matplotlib parameters for plot customization. |
{}
|
Returns:
Type | Description |
---|---|
Axes
|
The matplotlib Axes object containing the contour plot. This can be used for further customization or saving the plot after the method returns. |
Source code in prefab/device.py
plot_uncertainty(show_buffer=True, bounds=None, level=None, ax=None, **kwargs)
Visualizes the uncertainty in the edge positions of the predicted device.
This method plots the uncertainty associated with the positions of the edges of the device. The uncertainty is represented as a gradient, with areas of higher uncertainty indicating a greater likelihood of the edge position from run to run (due to inconsistencies in the fabrication process). This visualization can help in identifying areas within the device geometry that may require design adjustments to improve fabrication consistency.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
show_buffer
|
bool
|
If True, the buffer zones around the device will also be visualized. By default, it is set to True. |
True
|
bounds
|
Optional[tuple[tuple[int, int], tuple[int, int]]]
|
Specifies the bounds for zooming into the device geometry, formatted as ((min_x, min_y), (max_x, max_y)). If 'max_x' or 'max_y' is set to "end", it will be replaced with the corresponding dimension size of the device array. If None, the entire device geometry is visualized. |
None
|
level
|
int
|
The vertical layer to plot. If None, the device geometry is flattened. Defaults to None. |
None
|
ax
|
Optional[Axes]
|
An existing matplotlib Axes object to draw the uncertainty visualization on. If None, a new figure and axes will be created. Defaults to None. |
None
|
**kwargs
|
Additional matplotlib parameters for plot customization. |
{}
|
Returns:
Type | Description |
---|---|
Axes
|
The matplotlib Axes object containing the uncertainty visualization. This can be used for further customization or saving the plot after the method returns. |
Source code in prefab/device.py
predict(model, binarize=False, gpu=False)
Predict the nanofabrication outcome of the device using a specified model.
This method sends the device geometry to a serverless prediction service, which uses a specified machine learning model to predict the outcome of the nanofabrication process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model to use for prediction, representing a specific fabrication process
and dataset. This model encapsulates details about the fabrication foundry,
process, material, technology, thickness, and sidewall presence, as defined
in |
required |
binarize
|
bool
|
If True, the predicted device geometry will be binarized using a threshold method. This is useful for converting probabilistic predictions into binary geometries. Defaults to False. |
False
|
gpu
|
bool
|
If True, the prediction will be performed on a GPU. Defaults to False. Note: The GPU option has more overhead and will take longer for small devices, but will be faster for larger devices. |
False
|
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device class with the predicted geometry. |
Raises:
Type | Description |
---|---|
ValueError
|
If the prediction service returns an error or if the response from the service cannot be processed correctly. |
Source code in prefab/device.py
rotate(angle)
Rotate the device geometry by a given angle.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
angle
|
float
|
The angle of rotation in degrees. Positive values mean counter-clockwise rotation. |
required |
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device with the rotated geometry. |
Source code in prefab/device.py
semulate(model, gpu=False)
Simulate the appearance of the device as if viewed under a scanning electron microscope (SEM).
This method applies a specified machine learning model to transform the device geometry into a style that resembles an SEM image. This can be useful for visualizing how the device might appear under an SEM, which is often used for inspecting the surface and composition of materials at high magnification.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model
|
The model to use for SEMulation, representing a specific fabrication process
and dataset. This model encapsulates details about the fabrication foundry,
process, material, technology, thickness, and sidewall presence, as defined
in |
required |
gpu
|
bool
|
If True, the prediction will be performed on a GPU. Defaults to False. Note: The GPU option has more overhead and will take longer for small devices, but will be faster for larger devices. |
False
|
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device class with its geometry transformed to simulate an SEM image style. |
Source code in prefab/device.py
ternarize(eta1=1 / 3, eta2=2 / 3)
Ternarize the device geometry based on two thresholds. This function is useful for flattened devices with angled sidewalls (i.e., three segments).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
eta1
|
float
|
The first threshold value for ternarization. Defaults to 1/3. |
1 / 3
|
eta2
|
float
|
The second threshold value for ternarization. Defaults to 2/3. |
2 / 3
|
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device with the ternarized geometry. |
Source code in prefab/device.py
to_3d(thickness_nm)
Convert the 2D device geometry into a 3D representation.
This method creates a 3D array by interpolating between the bottom and top layers of the device geometry. The interpolation is linear.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
thickness_nm
|
int
|
The thickness of the 3D representation in nanometers. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
A 3D narray representing the device geometry with the specified thickness. |
Source code in prefab/device.py
to_gds(gds_path='prefab_device.gds', cell_name='prefab_device', gds_layer=(1, 0), contour_approx_mode=2, origin=(0.0, 0.0))
Exports the device geometry as a GDSII file.
This method converts the device geometry into a format suitable for GDSII files. The conversion involves contour approximation to simplify the geometry while preserving essential features.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gds_path
|
str
|
The path where the GDSII file will be saved. If not specified, the file is saved as "prefab_device.gds" in the current directory. |
'prefab_device.gds'
|
cell_name
|
str
|
The name of the cell within the GDSII file. If not specified, defaults to "prefab_device". |
'prefab_device'
|
gds_layer
|
tuple[int, int]
|
The layer and datatype to use within the GDSII file. Defaults to (1, 0). |
(1, 0)
|
contour_approx_mode
|
int
|
The mode of contour approximation used during the conversion. Defaults to 2,
which corresponds to |
2
|
origin
|
tuple[float, float]
|
The x and y coordinates of the origin for the GDSII export. Defaults to (0.0, 0.0). |
(0.0, 0.0)
|
Source code in prefab/device.py
to_gdsfactory()
Convert the device geometry to a gdsfactory Component.
Returns:
Type | Description |
---|---|
Component
|
A gdsfactory Component object representing the device geometry. |
Raises:
Type | Description |
---|---|
ImportError
|
If the gdsfactory package is not installed. |
Source code in prefab/device.py
to_gdstk(cell_name='prefab_device', gds_layer=(1, 0), contour_approx_mode=2, origin=(0.0, 0.0))
Converts the device geometry to a GDSTK cell object.
This method prepares the device geometry for GDSII file export by converting it into a GDSTK cell object. GDSTK is a Python module for creating and manipulating GDSII layout files. The conversion involves contour approximation to simplify the geometry while preserving essential features.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cell_name
|
str
|
The name of the cell to be created. Defaults to "prefab_device". |
'prefab_device'
|
gds_layer
|
tuple[int, int]
|
The layer and datatype to use within the GDSTK cell. Defaults to (1, 0). |
(1, 0)
|
contour_approx_mode
|
int
|
The mode of contour approximation used during the conversion. Defaults to 2,
which corresponds to |
2
|
origin
|
tuple[float, float]
|
The x and y coordinates of the origin for the GDSTK cell. Defaults to (0.0, 0.0). |
(0.0, 0.0)
|
Returns:
Type | Description |
---|---|
Cell
|
The GDSTK cell object representing the device geometry. |
Source code in prefab/device.py
to_img(img_path='prefab_device.png')
Exports the device geometry as an image file.
This method converts the device geometry to an ndarray using to_ndarray
,
scales the values to the range [0, 255] for image representation, and saves the
result as an image file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img_path
|
str
|
The path where the image file will be saved. If not specified, the image is saved as "prefab_device.png" in the current directory. |
'prefab_device.png'
|
Source code in prefab/device.py
to_ndarray()
Converts the device geometry to an ndarray.
This method applies the buffer specifications to crop the device array if necessary, based on the buffer mode ('edge' or 'constant'). It then returns the resulting ndarray representing the device geometry.
Returns:
Type | Description |
---|---|
ndarray
|
The ndarray representation of the device geometry, with any applied buffer cropping. |
Source code in prefab/device.py
to_stl(thickness_nm, filename='prefab_device.stl')
Export the device geometry as an STL file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
thickness_nm
|
int
|
The thickness of the 3D representation in nanometers. |
required |
filename
|
str
|
The name of the STL file to save. Defaults to "prefab_device.stl". |
'prefab_device.stl'
|
Raises:
Type | Description |
---|---|
ValueError
|
If the thickness is not a positive integer. |
ImportError
|
If the numpy-stl package is not installed. |
Source code in prefab/device.py
to_tidy3d(eps0, thickness)
Convert the device geometry to a Tidy3D Structure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
eps0
|
float
|
The permittivity value to assign to the device array. |
required |
thickness
|
float
|
The thickness of the device in the z-direction. |
required |
Returns:
Type | Description |
---|---|
Structure
|
A Tidy3D Structure object representing the device geometry. |
Raises:
Type | Description |
---|---|
ImportError
|
If the tidy3d package is not installed. |
Source code in prefab/device.py
trim()
Trim the device geometry by removing empty space around it.
Returns:
Type | Description |
---|---|
Device
|
A new instance of the Device with the trimmed geometry. |