Skip to content

Read

Functions to create a Device from various data sources.

from_gds(gds_path, cell_name, gds_layer=(1, 0), bounds=None, **kwargs)

Create a Device from a GDS cell.

Parameters:

Name Type Description Default
gds_path str

The file path to the GDS file.

required
cell_name str

The name of the cell within the GDS file to be converted into a Device object.

required
gds_layer tuple[int, int]

A tuple specifying the layer and datatype to be used from the GDS file. Defaults to (1, 0).

(1, 0)
bounds Optional[tuple[tuple[float, float], tuple[float, float]]]

A tuple specifying the bounds for cropping the cell before conversion, formatted as ((min_x, min_y), (max_x, max_y)), in units of the GDS file. If None, the entire cell is used.

None
**kwargs

Additional keyword arguments to be passed to the Device constructor.

{}

Returns:

Type Description
Device

A Device object representing the specified cell from the GDS file, after processing based on the specified layer.

Source code in prefab/read.py
def from_gds(
    gds_path: str,
    cell_name: str,
    gds_layer: tuple[int, int] = (1, 0),
    bounds: Optional[tuple[tuple[float, float], tuple[float, float]]] = None,
    **kwargs,
) -> Device:
    """
    Create a Device from a GDS cell.

    Parameters
    ----------
    gds_path : str
        The file path to the GDS file.
    cell_name : str
        The name of the cell within the GDS file to be converted into a Device object.
    gds_layer : tuple[int, int]
        A tuple specifying the layer and datatype to be used from the GDS file. Defaults
        to (1, 0).
    bounds : Optional[tuple[tuple[float, float], tuple[float, float]]]
        A tuple specifying the bounds for cropping the cell before conversion, formatted
        as ((min_x, min_y), (max_x, max_y)), in units of the GDS file. If None, the
        entire cell is used.
    **kwargs
        Additional keyword arguments to be passed to the Device constructor.

    Returns
    -------
    Device
        A Device object representing the specified cell from the GDS file, after
        processing based on the specified layer.
    """
    gdstk_library = gdstk.read_gds(gds_path)
    gdstk_cell = gdstk_library[cell_name]  # type: ignore
    device_array = _gdstk_to_device_array(
        gdstk_cell=gdstk_cell, gds_layer=gds_layer, bounds=bounds
    )
    return Device(device_array=device_array, **kwargs)

from_gdsfactory(component, **kwargs)

Create a Device from a gdsfactory component.

Parameters:

Name Type Description Default
component Component

The gdsfactory component to be converted into a Device object.

required
**kwargs

Additional keyword arguments to be passed to the Device constructor.

{}

Returns:

Type Description
Device

A Device object representing the gdsfactory component.

Raises:

Type Description
ImportError

If the gdsfactory package is not installed.

Source code in prefab/read.py
def from_gdsfactory(
    component: "gf.Component",
    **kwargs,
) -> Device:
    """
    Create a Device from a gdsfactory component.

    Parameters
    ----------
    component : gf.Component
        The gdsfactory component to be converted into a Device object.
    **kwargs
        Additional keyword arguments to be passed to the Device constructor.

    Returns
    -------
    Device
        A Device object representing the gdsfactory component.

    Raises
    ------
    ImportError
        If the gdsfactory package is not installed.
    """
    try:
        import gdsfactory as gf  # noqa: F401
    except ImportError:
        raise ImportError(
            "The gdsfactory package is required to use this function; "
            "try `pip install gdsfactory`."
        ) from None

    bounds = (
        (component.xmin * 1000, component.ymin * 1000),
        (component.xmax * 1000, component.ymax * 1000),
    )

    polygons = [
        polygon
        for polygons_list in component.get_polygons_points().values()
        for polygon in polygons_list
    ]

    contours = [
        np.array(
            [
                [[int(1000 * x - bounds[0][0]), int(1000 * y - bounds[0][1])]]
                for x, y in polygon  # type: ignore
            ]
        )
        for polygon in polygons
    ]

    device_array = np.zeros(
        (int(bounds[1][1] - bounds[0][1]), int(bounds[1][0] - bounds[0][0])),
        dtype=np.uint8,
    )
    cv2.fillPoly(img=device_array, pts=contours, color=(1, 1, 1))
    device_array = np.flipud(device_array)
    return Device(device_array=device_array, **kwargs)

from_gdstk(gdstk_cell, gds_layer=(1, 0), bounds=None, **kwargs)

Create a Device from a gdstk cell.

Parameters:

Name Type Description Default
gdstk_cell Cell

The gdstk.Cell object to be converted into a Device object.

required
gds_layer tuple[int, int]

A tuple specifying the layer and datatype to be used from the cell. Defaults to (1, 0).

(1, 0)
bounds tuple[tuple[float, float], tuple[float, float]]

A tuple specifying the bounds for cropping the cell before conversion, formatted as ((min_x, min_y), (max_x, max_y)), in units of the GDS cell. If None, the entire cell is used.

None
**kwargs

Additional keyword arguments to be passed to the Device constructor.

{}

Returns:

Type Description
Device

A Device object representing the gdstk.Cell, after processing based on the specified layer.

Source code in prefab/read.py
def from_gdstk(
    gdstk_cell: gdstk.Cell,
    gds_layer: tuple[int, int] = (1, 0),
    bounds: Optional[tuple[tuple[float, float], tuple[float, float]]] = None,
    **kwargs,
):
    """
    Create a Device from a gdstk cell.

    Parameters
    ----------
    gdstk_cell : gdstk.Cell
        The gdstk.Cell object to be converted into a Device object.
    gds_layer : tuple[int, int]
        A tuple specifying the layer and datatype to be used from the cell. Defaults to
        (1, 0).
    bounds : tuple[tuple[float, float], tuple[float, float]]
        A tuple specifying the bounds for cropping the cell before conversion, formatted
        as ((min_x, min_y), (max_x, max_y)), in units of the GDS cell. If None, the
        entire cell is used.
    **kwargs
        Additional keyword arguments to be passed to the Device constructor.

    Returns
    -------
    Device
        A Device object representing the gdstk.Cell, after processing based on the
        specified layer.
    """
    device_array = _gdstk_to_device_array(
        gdstk_cell=gdstk_cell, gds_layer=gds_layer, bounds=bounds
    )
    return Device(device_array=device_array, **kwargs)

from_img(img_path, img_width_nm=None, binarize=True, **kwargs)

Create a Device from an image file.

Parameters:

Name Type Description Default
img_path str

The path to the image file to be converted into a Device object.

required
img_width_nm Optional[int]

The width of the image in nanometers. If specified, the Device will be resized to this width while maintaining aspect ratio. If None, no resizing is performed.

None
binarize bool

If True, the image will be binarized (converted to binary values) before conversion to a Device object. This is useful for processing grayscale images into binary masks. Defaults to True.

True
**kwargs

Additional keyword arguments to be passed to the Device constructor.

{}

Returns:

Type Description
Device

A Device object representing the processed image, after optional resizing and binarization.

Source code in prefab/read.py
def from_img(
    img_path: str, img_width_nm: Optional[int] = None, binarize: bool = True, **kwargs
) -> Device:
    """
    Create a Device from an image file.

    Parameters
    ----------
    img_path : str
        The path to the image file to be converted into a Device object.
    img_width_nm : Optional[int]
        The width of the image in nanometers. If specified, the Device will be resized
        to this width while maintaining aspect ratio. If None, no resizing is performed.
    binarize : bool
        If True, the image will be binarized (converted to binary values) before
        conversion to a Device object. This is useful for processing grayscale images
        into binary masks. Defaults to True.
    **kwargs
        Additional keyword arguments to be passed to the Device constructor.

    Returns
    -------
    Device
        A Device object representing the processed image, after optional resizing and
        binarization.
    """
    device_array = cv2.imread(img_path, flags=cv2.IMREAD_GRAYSCALE) / 255
    if img_width_nm is not None:
        resolution = img_width_nm / device_array.shape[1]
        device_array = cv2.resize(
            device_array, dsize=(0, 0), fx=resolution, fy=resolution
        )
    if binarize:
        device_array = geometry.binarize_hard(device_array)
    return Device(device_array=device_array, **kwargs)

from_ndarray(ndarray, resolution=1.0, binarize=True, **kwargs)

Create a Device from an ndarray.

Parameters:

Name Type Description Default
ndarray ndarray

The input array representing the device geometry.

required
resolution float

The resolution of the ndarray in nanometers per pixel, defaulting to 1.0 nm per pixel. If specified, the input array will be resized based on this resolution to match the desired physical size.

1.0
binarize bool

If True, the input array will be binarized (converted to binary values) before conversion to a Device object. This is useful for processing grayscale arrays into binary masks. Defaults to True.

True
**kwargs

Additional keyword arguments to be passed to the Device constructor.

{}

Returns:

Type Description
Device

A Device object representing the input array, after resizing and binarization.

Source code in prefab/read.py
def from_ndarray(
    ndarray: np.ndarray, resolution: float = 1.0, binarize: bool = True, **kwargs
) -> Device:
    """
    Create a Device from an ndarray.

    Parameters
    ----------
    ndarray : np.ndarray
        The input array representing the device geometry.
    resolution : float
        The resolution of the ndarray in nanometers per pixel, defaulting to 1.0 nm per
        pixel. If specified, the input array will be resized based on this resolution to
        match the desired physical size.
    binarize : bool
        If True, the input array will be binarized (converted to binary values) before
        conversion to a Device object. This is useful for processing grayscale arrays
        into binary masks. Defaults to True.
    **kwargs
        Additional keyword arguments to be passed to the Device constructor.

    Returns
    -------
    Device
        A Device object representing the input array, after resizing and binarization.
    """
    device_array = ndarray
    if resolution != 1.0:
        device_array = cv2.resize(
            device_array, dsize=(0, 0), fx=resolution, fy=resolution
        )
    if binarize:
        device_array = geometry.binarize_hard(device_array)
    return Device(device_array=device_array, **kwargs)

from_sem(sem_path, sem_resolution=None, sem_resolution_key=None, binarize=False, bounds=None, **kwargs)

Create a Device from a scanning electron microscope (SEM) image file.

Parameters:

Name Type Description Default
sem_path str

The file path to the SEM image.

required
sem_resolution Optional[float]

The resolution of the SEM image in nanometers per pixel. If not provided, it will be extracted from the image metadata using the sem_resolution_key.

None
sem_resolution_key Optional[str]

The key to look for in the SEM image metadata to extract the resolution. Required if sem_resolution is not provided.

None
binarize bool

If True, the SEM image will be binarized (converted to binary values) before conversion to a Device object. This is needed for processing grayscale images into binary masks. Defaults to False.

False
bounds Optional[tuple[tuple[int, int], tuple[int, int]]]

A tuple specifying the bounds in nm for cropping the image before conversion, formatted as ((min_x, min_y), (max_x, max_y)). If None, the entire image is used.

None
**kwargs

Additional keyword arguments to be passed to the Device constructor.

{}

Returns:

Type Description
Device

A Device object representing the processed SEM image.

Raises:

Type Description
ValueError

If neither sem_resolution nor sem_resolution_key is provided.

Source code in prefab/read.py
def from_sem(
    sem_path: str,
    sem_resolution: Optional[float] = None,
    sem_resolution_key: Optional[str] = None,
    binarize: bool = False,
    bounds: Optional[tuple[tuple[int, int], tuple[int, int]]] = None,
    **kwargs,
) -> Device:
    """
    Create a Device from a scanning electron microscope (SEM) image file.

    Parameters
    ----------
    sem_path : str
        The file path to the SEM image.
    sem_resolution : Optional[float]
        The resolution of the SEM image in nanometers per pixel. If not provided, it
        will be extracted from the image metadata using the `sem_resolution_key`.
    sem_resolution_key : Optional[str]
        The key to look for in the SEM image metadata to extract the resolution.
        Required if `sem_resolution` is not provided.
    binarize : bool
        If True, the SEM image will be binarized (converted to binary values) before
        conversion to a Device object. This is needed for processing grayscale images
        into binary masks. Defaults to False.
    bounds : Optional[tuple[tuple[int, int], tuple[int, int]]]
        A tuple specifying the bounds in nm for cropping the image before conversion,
        formatted as ((min_x, min_y), (max_x, max_y)). If None, the entire image is
        used.
    **kwargs
        Additional keyword arguments to be passed to the Device constructor.

    Returns
    -------
    Device
        A Device object representing the processed SEM image.

    Raises
    ------
    ValueError
        If neither `sem_resolution` nor `sem_resolution_key` is provided.
    """
    if sem_resolution is None and sem_resolution_key is not None:
        sem_resolution = get_sem_resolution(sem_path, sem_resolution_key)
    elif sem_resolution is None:
        raise ValueError("Either sem_resolution or resolution_key must be provided.")

    device_array = cv2.imread(sem_path, flags=cv2.IMREAD_GRAYSCALE)
    device_array = cv2.resize(
        device_array, dsize=(0, 0), fx=sem_resolution, fy=sem_resolution
    )

    if bounds is not None:
        pad_left = max(0, -bounds[0][0])
        pad_right = max(0, bounds[1][0] - device_array.shape[1])
        pad_bottom = max(0, -bounds[0][1])
        pad_top = max(0, bounds[1][1] - device_array.shape[0])

        if pad_left or pad_right or pad_top or pad_bottom:
            device_array = np.pad(
                device_array,
                ((pad_top, pad_bottom), (pad_left, pad_right)),
                mode="constant",
                constant_values=0,
            )

        start_x = max(0, bounds[0][0] + pad_left)
        end_x = min(device_array.shape[1], bounds[1][0] + pad_left)
        start_y = max(0, device_array.shape[0] - (bounds[1][1] + pad_top))
        end_y = min(
            device_array.shape[0], device_array.shape[0] - (bounds[0][1] + pad_top)
        )

        if start_x >= end_x or start_y >= end_y:
            raise ValueError(
                "Invalid bounds resulted in zero-size array: "
                f"x=[{start_x}, {end_x}], "
                f"y=[{start_y}, {end_y}]"
            )

        device_array = device_array[start_y:end_y, start_x:end_x]

    if binarize:
        device_array = geometry.binarize_sem(device_array)

    buffer_spec = BufferSpec(
        mode={
            "top": "none",
            "bottom": "none",
            "left": "none",
            "right": "none",
        },
        thickness={
            "top": 0,
            "bottom": 0,
            "left": 0,
            "right": 0,
        },
    )
    return Device(device_array=device_array, buffer_spec=buffer_spec, **kwargs)

from_tidy3d(tidy3d_sim, eps, z, freq, buffer_width=0.1, **kwargs)

Create a Device from a Tidy3D simulation.

Parameters:

Name Type Description Default
tidy3d_sim Simulation

The Tidy3D simulation object.

required
eps float

The permittivity of the layer to extract from the simulation.

required
z float

The z-coordinate of the layer to extract from the simulation.

required
freq float

The frequency at which to extract the permittivity.

required
buffer_width float

The width of the buffer region around the layer to extract from the simulation. Defaults to 0.1 µm. This is useful for ensuring the inputs/outputs of the simulation are not affected by prediction.

0.1
**kwargs

Additional keyword arguments to be passed to the Device constructor.

{}

Returns:

Type Description
Device

A Device object representing the permittivity cross-section at the specified z-coordinate for the Tidy3D simulation.

Raises:

Type Description
ImportError

If the tidy3d package is not installed.

Source code in prefab/read.py
def from_tidy3d(
    tidy3d_sim: "td.Simulation",
    eps: float,
    z: float,
    freq: float,
    buffer_width: float = 0.1,
    **kwargs,
) -> Device:
    """
    Create a Device from a Tidy3D simulation.

    Parameters
    ----------
    tidy3d_sim : tidy3d.Simulation
        The Tidy3D simulation object.
    eps : float
        The permittivity of the layer to extract from the simulation.
    z : float
        The z-coordinate of the layer to extract from the simulation.
    freq : float
        The frequency at which to extract the permittivity.
    buffer_width : float
        The width of the buffer region around the layer to extract from the
        simulation. Defaults to 0.1 µm. This is useful for ensuring the inputs/outputs
        of the simulation are not affected by prediction.
    **kwargs
        Additional keyword arguments to be passed to the Device constructor.

    Returns
    -------
    Device
        A Device object representing the permittivity cross-section at the specified
        z-coordinate for the Tidy3D simulation.

    Raises
    ------
    ImportError
        If the tidy3d package is not installed.
    """
    try:
        from tidy3d import Coords, Grid
    except ImportError:
        raise ImportError(
            "The tidy3d package is required to use this function; "
            "try `pip install tidy3d`."
        ) from None

    X = np.arange(
        tidy3d_sim.bounds[0][0] - buffer_width,
        tidy3d_sim.bounds[1][0] + buffer_width,
        0.001,
    )
    Y = np.arange(
        tidy3d_sim.bounds[0][1] - buffer_width,
        tidy3d_sim.bounds[1][1] + buffer_width,
        0.001,
    )
    Z = np.array([z])

    grid = Grid(attrs={}, boundaries=Coords(attrs={}, x=X, y=Y, z=Z))
    eps_array = np.real(
        tidy3d_sim.epsilon_on_grid(grid=grid, coord_key="boundaries", freq=freq).values
    )
    device_array = geometry.binarize_hard(device_array=eps_array, eta=eps - 0.1)[
        :, :, 0
    ]
    device_array = np.rot90(device_array, k=1)
    return Device(device_array=device_array, **kwargs)

get_sem_resolution(sem_path, sem_resolution_key)

Extracts the resolution of a scanning electron microscope (SEM) image from its metadata.

Notes

This function is used internally and may not be useful for most users.

Parameters:

Name Type Description Default
sem_path str

The file path to the SEM image.

required
sem_resolution_key str

The key to look for in the SEM image metadata to extract the resolution.

required

Returns:

Type Description
float

The resolution of the SEM image in nanometers per pixel.

Raises:

Type Description
ValueError

If the resolution key is not found in the SEM image metadata.

Source code in prefab/read.py
def get_sem_resolution(sem_path: str, sem_resolution_key: str) -> float:
    """
    Extracts the resolution of a scanning electron microscope (SEM) image from its
    metadata.

    Notes
    -----
    This function is used internally and may not be useful for most users.

    Parameters
    ----------
    sem_path : str
        The file path to the SEM image.
    sem_resolution_key : str
        The key to look for in the SEM image metadata to extract the resolution.

    Returns
    -------
    float
        The resolution of the SEM image in nanometers per pixel.

    Raises
    ------
    ValueError
        If the resolution key is not found in the SEM image metadata.
    """
    with open(sem_path, "rb") as file:
        resolution_key_bytes = sem_resolution_key.encode("utf-8")
        for line in file:
            if resolution_key_bytes in line:
                line_str = line.decode("utf-8")
                match = re.search(r"-?\d+(\.\d+)?", line_str)
                if match:
                    value = float(match.group())
                    if value > 100:
                        value /= 1000
                    return value
    raise ValueError(f"Resolution key '{sem_resolution_key}' not found in {sem_path}.")